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The main aim of this research is to understand the underlying features of natural systems like Eco/Bio systems,

which tend to be highly robust under perturbations, and then apply these principles to build a robust engineering

system. Toward this direction, some fundamental qualitative features of ecological sign stability are reviewed and

transformed into a set of mathematical results in matrix theory with quantitative information, which is usually

encountered in engineering sciences. In particular, the effect of the signs of elements of a matrix on the matrix

properties such as eigenvalues and condition number is shown. Similarly, it is also shown that under some

assumptions on the magnitudes of the elements, predator–prey phenomena render some special properties like

normality to matrices. These properties in turn are shown to impart superior robustness bounds for a class of sign-

stable matrices. Then the issue of controller design is addressed, and efforts are made to identify target closed-loop

systems that incorporate the desirable features of ecological systems. For a closed-loop system satisfying these

properties, an algorithm for the design of controller is given. This control design procedure is illustratedwith the help

of two applications in the Aerospace field: satellite attitude control and aircraft lateral dynamics control. The results

presented in this paper can assist in the use of ecological systemprinciples to build highly robust engineering systems.

I. Introduction

I T IS well-recognized that natural systems such as ecological and
biological systems are highly robust under various perturbations.

On the other hand, engineered systems can be made highly optimal
for good performance, but they tend to be nonrobust under per-
turbations. Thus, it is natural and essential for engineers to delve into
the question of what the underlying features of natural systems are,
what makes them so robust, and then try to apply these principles to
make the engineered systems more robust. The research reported in
this paper is an attempt to make a contribution in this aspect.
Toward this objective, the interesting aspect of qualitative stability
in ecological systems is considered in particular. The fields of
population biology and ecology deal with the analysis of growth and
decline of populations in nature and the struggle of species to
predominate over one another. The existence or extinction of a
species, apart from its own effect, depends on its interactions with
various other species in the ecosystem it belongs to. Hence, the type
of interaction is very critical to the sustenance of species. This paper
attempts to study these interactions and their nature thoroughly
and investigate the effect of these qualitative interactions on the
quantitative properties of matrices, specifically on three matrix
properties, namely, eigenvalue distribution, normality/condition
number, and robust-stability analysis. This type of study is important
for researchers in both fields, because qualitative properties do have
significant impact on the quantitative aspects. This paper attempts to
bring out that interrelationship in a sound mathematical framework.
In addition, these properties are in turn exploited in the design of
controllers for engineering systems to make them more robust.
With this backdrop the paper is organized as follows: in the next
section, the basic principles of ecosystem interactions are briefly
reviewed. In Section III, the concept of ecological sign stability for an
ecosystem is analyzed in detail, and new results on the matrix-theory

implications of the effect of those interactions on three specific
characteristics, namely eigenvalue distribution, normality/ condition
number, and robust stability are presented. The relevance of these
ecology principles to engineering systems is highlighted by showing
that a special class of ecological sign-stable matrices is more
robust than the same class of standard Hurwitz-stable matrices. The
proposed theory is illustrated with various examples. Aided by this
result, in Section IV, the design of a controller using ideas from
ecological sign stability is presented. The proposed controller-design
procedure is illustrated with the help of two application examples in
the aerospace field: one for a satellite attitude control problem and
another for an aircraft lateral dynamics problem. Finally, concluding
remarks are offered in Section V.

II. Brief Review of Ecological Principles

In this section a few ecological system principles that are relevant
to this research are briefly reviewed. In a complex community
composed of many species, numerous interactions take place. These
interactions in ecosystems can be broadly classified as 1) mutualism,
2) commensalism/ammensalism, 3) competition, and 4) predation
(parasitism). Mutualism occurs when both species benefit from the
interaction. When one species benefits/suffers and the other one
remains unaffected, the interaction is classified as commensalism/
amensalism. When species compete with each other, that interaction
is known as competition. Finally, if one species is benefited and the
other suffers, the interaction is known as predation (parasitism). In
ecology, themagnitudes of themutual effects of species on each other
are seldom precisely known, but one can establish with certainty the
types of interactions that are present. Many mathematical popu-
lation models were proposed over the last few decades to study the
dynamics of eco/bio systems, which are discussed in textbooks [1,2].
The most significant contributions in this area come from the works
of Lotka and Volterra. The following is a model of a predator–prey
interaction where x is the prey and y is the predator:

_x� xf�x; y� _y� yg�x; y� (1)

where it is assumed that @f �x; y�=@y < 0 and @g �x; y�=@x > 0. This
means that the effect of y on the rate of change of x� _x� is negative,
while the effect of x on the rate of change of y� _y� is positive. A simple
example is

_R 1 � R1�b � pR2� �prey� (2a)
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_R 2 � R2�rR1 � d� �predator� (2b)

where R1 is prey density,R2 is predator density, b is the intrinsic rate
of prey-population increase, p is predation-rate coefficient, r is the
reproduction rate of predators per one prey eaten, and d is the
predator mortality rate, and all these are positive parameters. The
predation–prey nature can be clearly seen in this simplified model.

The negative coefficient of the R1R2 term in the equation for _R1 and

the positive coefficient of theR1R2 term in the equation for _R2 are the
manifestation of the predator–prey interaction between the species.

A more general n-species Lotka–Volterra system can be repre-
sented as [3,4]:

dRi
dt
� Ri

�
bi �

Xn
j�1

aijRj

�
; i� 1; 2; � � � ; n (3)

where no mathematical constraints are imposed on the various
coefficients. These equations may represent predator–prey, mutu-
alism, or competition cases. The predator–prey category of Lotka–
Volterra models has mathematical constraints on the coefficients
such that there is mutual negative and positive effect of n species on
each other. Such models are computationally challenging, and,
hence, finding better numerical solutions and obtaining approximate
analytical solutions of these systems [5] is a topic for continued
research. Though originally formulated to describe the time history
of a biological system, this model finds its application in a number
of engineering fields [6,7]. In fact, the one-predator and one-
prey model is one of the most popular ones used to demonstrate a
simple nonlinear control-system model. Numerous other models of
predator–prey systems were also proposed in the literature [1,2].
These models include many parameters that make the model more
real and more difficult to analyze. These also include models of
increasing levels of complexity, which account for continually acting
unpredictable disturbances like migrating species, diseases, change
in climatic conditions, etc., which in turn decrease the accuracy of
the predictions. Noting that various predator–prey models are
extensively studied in thefield of engineering, in this current research
and in this paper, for brevity in exposition, this study is restricted to
Lotka–Volterra models and their various properties. It is of interest
to note that there is considerable research being carried out on
non-predator–prey-type models such as compartmental models as in

[8–11], which attest to the growing interest in the interrelationship
between life-sciences research and engineering-sciences research.

The stability of the equilibrium solutions of these models has been
a subject of intense study in life sciences [12]. These models and the
stability of such systems give deep insight into the balance in nature.
If a state of equilibrium can be determined for an ecosystem, it
becomes inevitable to study the effect of perturbation of any kind in
the population of the species on the equilibrium. These small per-
turbations from equilibrium can be modeled as linear state-space
systems, where the state-space plant matrix is the Jacobian. This
means that, technically, in the Jacobianmatrix, one does not know the
actual magnitudes of the partial derivatives, but their signs are known
with certainty. That is, the nature of the interaction is known but not
the intensity levels of those interactions. As mentioned before, there
are four classes of interactions, and after linearization they can be
represented in the following manner.

In Table 1, column two is a visual representation of such
interactions and is known as a directed graph, or digraph [13], while
column three is the matrix representation of the interaction between
two species. * represents the effect of a species on itself.

In other words, in the Jacobian matrix, the qualitative information
about the species is represented by the signs �, �, or 0. Thus, the
�i; j�th entry of the state-space (Jacobian) matrix simply consists of
signs �, �, or 0, with the � sign indicating species j having a
positive influence on species i, the � sign indicating negative
influence, and 0 indicating no influence. The diagonal elements give
information regarding the effect of a species on itself. Negative
means the species is self-regulatory, positivemeans it aids the growth
of its own population, and zero means it has no effect on itself. For
example, in Fig. 1 below, each of the sign-pattern matrices A1, A2,
and A3 are the Jacobian form, while D1, D2, and D3 are their
corresponding digraphs, A1 being an ecosystem with three species
and A2 and A3 being ecosystems with five and six species,
respectively.

The question then is whether it can be concluded, just from this
sign pattern, whether the system is stable or not. If so, the system is
said to be qualitatively stable. In some literature, this concept is also
labeled as sign stability. In what follows, these two terms are used
interchangeably. It is important to keep in mind that the systems
(matrices) that are qualitatively stable (sign stable) are also stable in
the ordinary sense. That is, qualitative stability implies Hurwitz

Fig. 1 Various sign patterns and their corresponding digraphs representing ecological systems: a) three-species system, b) five-species system, and

c) six-species system.
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stability (eigenvalues with negative real part) in the ordinary sense of
engineering sciences. In other words, once a particular sign matrix is
shown to be qualitatively (sign) stable, anymagnitude can be inserted
in those entries, and for all those magnitudes the matrix is auto-
matically Hurwitz stable. This is the most attractive feature of a sign-
stable matrix. However, the converse is not true. Systems that are not
qualitatively stable can still be stable in the ordinary sense for certain
appropriate magnitudes in the entries. From now on, to distinguish
from the concept of qualitative stability of life-sciences literature,
the label of quantitative stability for the standard Hurwitz stability in
engineering sciences is used.

Kaszkurewicz and Bhaya [14] briefly discuss sign stability in the
context of matrix diagonal stability in systems and computation, and
they provide a few references within the book. However, these
references touch upon the sufficient conditions for sign stability
and do not allude to the color-test conditions, which are part of
the necessary and sufficient conditions provided in the ecology
literature. In [15–17], necessary and sufficient conditions for
qualitative stability of an ecosystem were given. These ecological-
sign-stability conditions, stated in terms of ecology, were interpreted
in matrix-theory notation, and these conditions were transformed
into an algorithm to test the sign stability of a given sign matrix in
[18,19]. With this algorithm, all matrices that are sign stable can be
stored a priori as discussed in [20]. If a sign pattern in a given matrix
satisfies the conditions given in the above papers (thus in the
algorithm), it is an ecological sign-stable pattern, and, hence, that
matrix is Hurwitz stable for any magnitudes in its entries. A subtle
distinction between sign-stable matrices and ecological sign-stable
matrices is nowmade, emphasizing the role of nature in interactions.
Though the property of Hurwitz stability is held in both cases,
ecosystems sustain solely because of interactions between various
species. In matrix notation this means that the nature of off-diagonal
elements is essential for an ecosystem. Consider a strictly upper-
triangular 3 � 3 matrix:

A�
� 0 �
0 � 0

0 0 �

2
4

3
5

From the quantitative viewpoint, it is seen that the matrix is
Hurwitz stable for any magnitudes in the entries of the matrix. This
means that it is indeed (qualitatively) sign stable. But its digraph has
the following structure:

3 

2 

1 

_

_

+

_

Since there is no predator–prey link and in fact no link at all
between species 1 and 2 and 3 and 2, such a digraph cannot represent
an ecosystem. Therefore, though a matrix is sign stable, it need not
belong to the class of ecological sign-stable matrices. In Fig. 2, these
various classes of sign patterns and the corresponding relationship
between these classes is depicted. So, every ecological sign-stable
pattern is sign stable, but the converse is not true.

With this brief review of ecological system principles, the
implications of these ecological qualitative principles on three
quantitative matrix-theory properties (namely eigenvalues, normal-
ity/condition number, and robust stability) are investigated. In
particular, in the next section, new results that clearly establish these
implications are presented. As mentioned in the previous section,
the motivation for this study and analysis is to exploit some of
these desirable features of ecological system principles to design
controllers for engineering systems to make them more robust.

III. Ecological Sign Stability and its Implications
in Quantitative Matrix Theory

In this major section of the paper, the implications of the
ecological-sign-stability aspect discussed above on the quantitative
matrix theory are established. In particular, the section offers
three explicit contributions to expand the current knowledge base:
1) eigenvalue distribution of sign-stable matrices, 2) normality/
condition-number properties of ecological sign-stable matrices, and
3) robustness properties of ecological sign-stable matrices. These
three contributions in turn help in determining the role ofmagnitudes
in quantitative ecological sign-stable matrices. This type of infor-
mation is clearly helpful in designing robust controllers as shown in
later sections. With this motivation, a three-species ecosystem is
thoroughly analyzed, and the ecological principles (in terms of
matrix properties that are of interest in engineering systems) are
interpreted. This section is organized as follows: first, new results
on the eigenvalue distribution of ecological sign-stable matrices
are presented; second, considering ecological systems with only
predation–prey-type interactions, it is shown how selection of
appropriate magnitudes in these interactions imparts the property of
normality (and thus highly desirable condition numbers) in matrices.
In what follows, for each of these cases, concepts are first discussed
from an ecological perspective, and then the resulting matrix theory
implications from a quantitative perspective are presented.

A. Stability and Eigenvalue Distribution

Stability is the most fundamental property of interest to all
dynamic systems. Clearly, in time-invariant matrix theory, stability
of matrices is governed by the negative real part nature of its
eigenvalues. It is always useful to get bounds on the eigenvalue
distribution of a matrix with as little computation as possible, it is
hoped as directly as possible from the elements of thatmatrix. It turns
out that sign-stable matrices have interesting eigenvalue distribution
bounds. A few new results are now presented in this aspect.

1. Ecological Perspective: Nature of Interactions and Their Role in

Stability

In a qualitative stable ecosystem, two species cannot have positive
effect on themselves or on each other, because this means that their
population might grow without bound. Hence the case of mutualism
is eliminated. A stable system also eliminates the case of com-
petition, which amounts to extinction. Therefore, a stable ecosystem
is essentially made of self-regulatory (or no regulation at least)
species that have only predator–prey/parasitic and commensal/
ammensal interactions.

2. Quantitative Engineering Perspective: Eigenvalue Distribution of

Sign-Stable Matrices

In what follows, the quantitativematrix-theory properties for an n-
species ecological system is established; i.e., an n � n sign-stable
matrix with predator–prey and commensal/ammensal interactions is
considered, and its eigenvalue distribution is analyzed. In particular,
various cases of diagonal elements’ nature, which are shown to

Fig. 2 Classification of sign patterns.
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possess some interesting eigenvalue distribution properties, are
considered.

Theorem 1 (case of all negative diagonal elements): for all n � n
sign-stable matrices, with all negative diagonal elements, the bounds
on the real parts of the eigenvalues are given as follows: the lower
bound on the magnitude of the real part is given by the minimum-
magnitude diagonal element, and the upper bound is given by the
maximum-magnitude diagonal element in the matrix. That is, for an
n � n ecological sign-stable matrix A� �aij	,

jaiijmin 
 jRe���jmin 
 jRe���jmax 
 jaiijmax (4)

Proof: the characteristic equation for an n � n, real, Hurwitz-
stable matrix A is given by �n � a1�n�1 � a2�n�2 � � � � � an � 0,
where a1 ��trace�A� and the other coefficient ai ( i� 1; 2; � � � ; n)
satisfy the positive Hurwitz-determinant (Routh–Hurwitz) con-
ditions. Note that in a sign-stable matrix a1 ��trace�A��P
aii �

P
n
i�1 �jRe�ij, where aii < 0 for all i.

In a sign-stable matrix, where Hurwitz stability is satisfied
independent of themagnitudes of the elements, it is clear that the real
parts of the eigenvalues are always negative for anymagnitudes in the
entries of the matrix. The absolute values of the real parts of the
eigenvalues are solely dependent on the magnitudes of the diagonal
elements, and the imaginary parts of these eigenvalues are decided by
the off-diagonal elements of the sign-stable matrix. Hence,

jaiijmin 
 jRe���jmin 
 jRe���jmax 
 jaiijmax (5)

Example 1: consider the sign-pattern matrix of a 3 � 3 ecological
sign-stable matrix that has one predator–prey link and two ammensal
interactions and all self-regulating species, namely the matrix given
by

A�
� � �
0 � 0

� � �

2
4

3
5

Selecting a random set of numbers (0.5, 1.2, 4) that the elements of
the above matrix can take, all possible matrices are formed, each
element having themagnitude from this set of numbers. Hence, there
are 2187 quantitative sign-stable matrices with the same sign pattern.
Noting that the maximum magnitude is 4 and the minimum
magnitude is 0.5, the eigenvalue distribution of all the matrices
shown in Fig. 3 verifies the validity of the above theorem, with the
lower limit on the real part of the eigenvalues being 0.5 and the upper
limit being 4.

Corollary (case of some diagonal elements being zero): if the
ecological sign-stable matrix has zeros on the diagonal, the bounds
are given by

jaiijmin��0�< jRe���jmin 
 jRe���jmax 
 jaiijmax (6)

Example 2: the sign pattern in Example 1 has all negative diagonal
elements. In this example, the case discussed in the corollary, where
one of the diagonal elements is zero, is considered. This sign pattern
is as shown in the matrix below:

A�
� � �
0 � 0

� � 0

2
4

3
5

Figure 4 clearly shows the validity of the corollary. The
same observation holds even when there are two zeros on the
diagonal.

It can be seen that these theorems offer significant insight into the
eigenvalue distribution of n � n ecological sign-stable matrices.
Note that the bounds can be simply read off from the magnitudes of
the elements of the matrices. This is quite in contrast to the general
quantitative Hurwitz-stable matrices, where the lower and upper
bounds on the eigenvalues of a matrix are given in terms of the

singular values of thematrix and/or the eigenvalues of the symmetric
part and skew-symmetric parts of the matrices, using the concept of
field of values, which obviously require much computation and are
complicated functions of the elements of the matrices.

Now label the ecological sign-stable matrices with magnitudes
inserted in the elements as quantitative ecological sign-stable
matrices. Note that thesemagnitudes can be arbitrary in each nonzero
entry of the matrix. It is interesting and important to realize that these
bounds, based solely on sign stability, do not reflect diagonal
dominance, which is the typical case with general Hurwitz-stable
matrices. Thus it is the diagonal connectivity that is important in
these quantitative ecological sign-stable matrices and not the
diagonal dominance.

B. Normality and Condition Number

Based on this new insight on the eigenvalue distribution of sign-
stable matrices, in what follows, other matrix-theory properties of
sign-stable matrices are investigated. In particular, another matrix-
theory property of normality/condition number is studied. But this
time, the focus is only on ecological sign-stable matrices with pure
predator–prey links with no other types of interactions.

1. Ecological Perspective: Role of Pure Predator–Prey Interactions

Apart from the self-regulatory characteristics of species, the
phenomena that contribute to the stability of the system are the types
of interactions. Since a predator–prey interaction has a regulating
effect on both species, predator–prey interactions are of interest in

-5 -4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6

Eigenvalues on the complex plane

-0.5 -4.0 
Fig. 3 Eigenvalue distribution of sign-stable matrices with all negative

diagonal elements.
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Eigenvalues on the complex plane
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Fig. 4 Eigenvalue distribution of sign-stable matrices with some zero-
diagonal elements.
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this stability analysis. To study the role played by these interactions,
henceforth, the focus is on systems with pure predator–prey links.
For a matrix A, pure-predator–prey-link structure implies the
following: 1) Aij:Aji 
 0 8 i; j and 2) Aij:Aji � 0 if and only if
Aij � Aji � 0.

Consider three-species systems. For sign-stable three-species
ecosystems, since no species can have positive effect on itself, all the
diagonal elements are either negative or zero. Hence there can be
1) all negative diagonal elements, 2) one zero and two negative
diagonal elements, or 3) two zeros and one negative diagonal
element. Based on the predator–prey links, these matrices can be
further categorized as ecosystems with the following traits:

1) They have no predator–prey links: aij � aji � 0 8 i; j.
2) They have one predator–prey link: this means there is only one

aij � aji < 0 situation.
3) They have two predator–prey links: this means there is only one

aij � aji � 0 situation.
4) There can never be three predator–prey links in a three-species

qualitatively stable ecosystem.
Combining the first two of these categories, the set of pure-

predator–prey-link matrices can be arranged as follows. A zero
diagonal element implies that a species has no control over its
growth/decay rate, and so, in order to regulate the population of the
species, it is essential that it be connected to at least one predator–
prey link. Hence, in Case I, there is need for a minimum of two
predator–prey links as there are two zeros on the diagonal (two
species have no control on their growth/decay). Similarly, in Case II,
since there is one zero on the diagonal, the minimum number of
predator–prey links is one. In the case where all diagonal elements
are negative, the matrix represents an ecosystem with all self-
regulating species. If every species has control over its regulation,
a limiting case for stability is a system with no interspecies
interactions. This means that there need not be any predator–
prey interactions. This is a trivial ecosystem, and such matrices
actually belong to the only sign-stable set, not to an ecological sign-
stable set.

2. Quantitative Engineering Perspective: Negative Diagonal Elements

and Off-Diagonal Elements of Opposite Sign

But matrices with all negative diagonal elements are in general
desirable from a stability point of view. Ecological sign-stable
matrices have predator–prey links, and these types of interactions
impart certain desirable features in matrix properties such as the
condition number. Hence, in what follows, matrices with all nega-
tive diagonal elements and with two predator–prey links are
considered.

Consider all 3 � 3 matrices for Case I-3. Thus, all three diagonal
elements have to be negative. There are three off-diagonal element
pairs with opposite signs representing pure predation–prey links,
namely pairs: �a12; a21	, �a13; a31	, and �a23; a32	. Since in Case I-3,
which necessarily admits a maximum of two pure predator–prey
links in a 3 � 3matrix, one of the pairs above can be taken to be both
zero elements. Thus there are 12 ecological sign-stable matrices
belonging to Case I-3:

� 0 �
0 � �
� � �

2
4

3
5 � 0 �

0 � �
� � �

2
4

3
5 � 0 �

0 � �
� � �

2
4

3
5 � 0 �

0 � �
� � �

2
4

3
5

�
� � 0

� � �
0 � �

2
4

3
5 � � 0

� � �
0 � �

2
4

3
5 � � 0

� � �
0 � �

2
4

3
5 � � 0

� � �
0 � �

2
4

3
5

�
� � �
� � 0

� 0 �

2
4

3
5 � � �
� � 0

� 0 �

2
4

3
5 � � �
� � 0

� 0 �

2
4

3
5 � � �
� � 0

� 0 �

2
4

3
5

Now, consider some special quantitative ecological stable
matrices of these 12 matrices in the sense that the magnitudes of the
elements are selected in a specific way.

Case I: all the diagonal-element magnitudes are equal, and all of
the pure predation–prey link elementmagnitudes are also equal to the
magnitude of the diagonal element. That is, the magnitudes of all
nonzero elements are equal. As an example, consider

�2 �2 0

�2 �2 �2
0 �2 �2

2
4

3
5

Applying Theorem 1 to this matrix, it is concluded that this matrix
has all three eigenvalues with equal (negative) real parts. The matrix
is thus is a normal matrix (with the property that A � AT � AT � A)
[21]. This in turn implies that the modal matrix of this matrix is
orthogonal, resulting in the observation that it has a condition number
of one, which is an extremely desirable property for all matrices
occurring in engineering applications.

Thus, all of the 12 matrices given above with ones in all of their
nonzero entries are indeed normal matrices, and all of them therefore
have modal matrices with condition number one.

Case II: in this case, the pure-predator–prey-link element
magnitudes are not necessarily equal to the magnitude of the
diagonal elements. The intensity of interaction in a single predator–
prey link should be equal, but it is not necessary that all the predator–
prey links have the same intensity. The matrix below is an example
for this case:

�2 �3 0

�3 �2 �5
0 �5 �2

2
4

3
5

For this case also, the matrix is normal, and the modal matrix has a
condition number equal to one.

3. Generalization to Higher-Order Matrices

The property of normality is observed in higher order systems too.
An ecosystem with purely predator–prey-link interactions is
represented by the following digraph for a five-species system. The
sign-pattern matrix A represents this digraph.
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For example, if both the strengths of interactions and diagonal
elements are unity, the qualitative matrix with maximum number of
pure predator–prey links becomes the following quantitative matrix:

A�

�1 �1 0 0 0

�1 �1 �1 0 0

0 �1 �1 �1 0

0 0 �1 �1 �1
0 0 0 �1 �1

2
66664

3
77775

For such a matrix, it can be easily observed that the condition
number of its modal matrix is always one. In other words, it is clearly
seen that the predator–prey links with equal strengths of interactions
(an ecology-derived principle) are imparting the feature of normality
(a quantitative feature of matrix theory used in engineering systems).

The example below clearly demonstrates the influence of
predator–prey links on the properties of the matrix. This matrix can
easily bemade aHurwitz-stable, nonecological sign-stablematrix by
changing element (4, 5) from �1 to �1:

�1 �1 0 0 0

�1 �1 �1 0 0

0 �1 �1 �1 0

0 0 �1 �1 �1
0 0 0 �1 �1

2
66664

3
77775

For this matrix, the condition number of the modal matrix is 3.0419.
Thus it is clear that while the condition number of the modal matrix
for a matrix with purely predator–prey links of equal interaction
intensities is always one, it is not equal to one once predation–prey
property is lost. Therefore, it can be concluded that the existence
of predator–prey links in a matrix improves some of its matrix
properties, which can be used to improve the performance of a
quantitative engineering system. As observed in the case of 3 � 3
matrices, it is sufficient that the interaction strengths in a predator–
prey link be equal. For the condition of normality to hold, all the
interaction strengths need not be equal. This means that even

�1 �1 0 0 0

�1 �1 �3 0 0

0 �3 �1 �7:5 0

0 0 �7:5 �1 �4
0 0 0 �4 �1

2
66664

3
77775

is a normal matrix.
Based on the above observations, the following theorem can be

stated and proved:
Theorem 2: an n � n matrix A with equal diagonal elements and

equal predation–prey interaction strengths for each predation–prey
link is a normal matrix (Proof given in Appendix).

C. Robust-Stability Properties of Ecological Sign-Stable Matrices

The third and final contribution of this section is related to the
connection between ecological sign stability and robust stability in
engineering systems.

1. Ecological Perspective: Independence from Magnitude Information

As mentioned earlier, the most interesting feature of ecological
sign-stablematrices is that the stability property is independent of the
magnitude information in the entries of the matrix. Thus the natures
of interactions, which in turn decide the signs of the matrix entries
and their locations in the matrix, are sufficient to establish the
stability of the given sign matrix. Clearly, it is this independence
(or nondependence) from magnitude information that imparts the
property of robust stability to engineering systems. This aspect of
robust stability in engineering systems is elaborated next from a
quantitative matrix-theory point of view.

2. Quantitative Engineering Perspective: Robust Stability of Matrix

Families

In mathematical sciences, the aspect of robust stability of families
of matrices has been an active topic of research for many decades.
This aspect essentially arises in many applications of system and
control theory. When the system is described by linear state-space
representation, the plant-matrix elements typically depend on some
uncertain parameters, which vary within a given bounded interval.

In the early eighties and nineties, widespread research on robust
stability of linear state-space systems with structured real parameter
uncertainty was reported in the literature [22,23]. The problem
formulation in that research was the question, given a Hurwitz-stable
matrix A, of how much perturbation E can be tolerated to maintain
the stability of the perturbed matrix A� E. When bounds on the
norm of E are given to maintain stability, it is labeled as robust
stability for unstructured, norm-bounded uncertainty. When bounds
on the individual elements of the matrix are important to maintain
stability, it is labeled as robust stability for structured real-parameter
uncertainty. The interval-matrix problem (or more generally the
linear interval-parameter-matrix-family problem, in which the given
uncertain parameters vary within a given interval range with a lower
and upper bound on the parameters) then became a special case of
this structured-uncertainty-problem formulation. Many sufficient
conditions were given throughout the literature, which were sum-
marized in [23]. In this area, it was extremely difficult to give a
necessary and sufficient condition in a finitely computable manner
(like using only vertex-matrix information, where vertexmatrices are
those matrices formed at the vertices of the interval parameters), but
after intense research of many years, it was only recently that a
method was presented that gives a necessary and sufficient vertex
solution for checking the robust stability of a linear interval
parameter matrix family [24]. All these techniques involve con-
siderable computation to arrive at the robust stability bounds, but
these techniques never delved into the sign pattern of the elements of
the matrix and thus never exploited this sign structure. But now with
the ecological-sign-stability concept, it is clear that by paying
attention to the sign pattern of the given matrix-element variations,
much more can be said about the robust stability of the perturbed
matrices. This aspect is elaborated as follows.

3. Robust Stability Analysis of a Class of Interval Matrices

Consider the interval matrix family, in which each individual
element varies independently within a given interval. Thus the
interval matrix family is denoted by A 2 �AL; AU 	 as the set of all
matrices A that satisfy �AL�ij 
 Aij 
 �AU�ij for every i and j.

Now, consider a special class of interval matrix family in which,
for each element that is varying, the lower bound, i.e., �AL�ij, and the
upper bound, i.e., �AU�ij, are of the same sign. For example, consider
the interval matrix given by

A�
0 a12 a13
a21 0 0

a31 0 a33

2
4

3
5

with the elements a12, a13, a21, a31, and a33 being uncertain varying
in some given intervals as follows:

2 
 a12 
 5

1 
 a13 
 4

� 3 
 a21 
 �1
� 4 
 a31 
 �2
� 5 
 a33 
 �0:5

4. Qualitative Stability as a Sufficient Condition for Robust Stability of a

Class of Interval Matrices: A Link Between Life Sciences and Engineering

Sciences

It is clear that ecological sign-stable matrices have the interesting
feature that once the sign pattern is a sign-stable pattern, the stability
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of the matrix is independent of the magnitudes of the elements of the
matrix. That this property has direct link to stability robustness of
matrices with structured uncertainty was recognized in earlier papers
on this topic [18,19].

In [25], a viewpoint was put forth that advocates using the
qualitative-stability concept as a means of achieving robust stability
in the standard uncertain-matrix theory. Then, a sufficient condition
for checking the robust stability of a class of interval matrices was
presented using the qualitative-stability concept. This argument is
illustrated with the following examples:

Example 3: consider the above given interval matrix. Once it is
recognized that the signs of the interval entries in the matrix are not
changing (within the given intervals), the sign matrix can be formed.
The sign matrix for this interval matrix is given by

A�
0 � �
� 0 0

� 0 �

2
4

3
5

The above sign matrix is known to be qualitative (sign) stable. Since
sign stability is independent of magnitudes of the entries of the
matrix, it can be concluded that the above interval matrix is robustly
stable in the given interval ranges. If the robust stability of this
interval matrix is to be ascertained by the methods of robustness
theory of mathematical sciences, one needs to resort to the extreme-
point solution offered in [24], which would have been computa-
tionally expensive because it involves checking the Hurwitz stability
of the 25 � 32 vertex matrices first and then following the algo-
rithm to check the virtual stability of the 32 KN (Kronecker
Nonsingularity) matrices in the higher-dimensional Kronecker–
Lyapunov matrix space. But, in the above matrix, once it is realized
that the sign of the matrix entries is not changing within the given
intervals, the qualitative-stability concept can readily be applied and
it can be concluded that the above interval matrix is robustly stable,
because with only signs replacing the entries it is observed that the
above matrix is Hurwitz stable irrespective of the magnitudes of
those entries. Thus the robust stability of the entire interval-matrix
family is established without resorting to any algorithms related to
robust-stability literature. Incidentally, if the vertex algorithm of [24]
is applied for this problem, it can be also concluded that this interval-
matrix family is indeed Hurwitz stable in the given interval ranges.

In fact, more can be said about the robust stability of this matrix
family using the sign-stability application. This matrix family is
indeed robustly stable, not only for those given interval ranges above,
but also for any large interval ranges in those elements as long as
those interval ranges are such that the elements do not change signs in
those interval ranges. Thus, elements a12 and a13 can vary along the
entire positive real line, and elements a21, a31, and a33 can vary along
the entire negative real line simultaneously, and still the resulting
matrices are all stable. In other words, if this matrix were the plant
matrix for a linear state-space system, that particular linear system
has infinite bounds for robust stability in the specific sign preserving
variations in the elements of that matrix. It could not have been
possible to conclude this but for the usefulness of the sign-stability
concept.

In the above discussion, the emphasis was on exploiting the sign
pattern of a matrix in robust-stability analysis of matrices. Thus, the
tolerable perturbations are direction-sensitive. Also, no perturbation
is allowed in the structural zeros of the ecological sign-stable
matrices. In what follows, it is shown that ecological sign-stable
matrices can still possess superior robustness properties even under
norm-bounded perturbations, in which perturbations in structural
zeros are also allowed in ecological sign-stable matrices.

Toward this objective, the stability-robustness measures of linear
state-space systems as discussed in [22,23] are considered. In other
words, a linear state-space plant matrix A, which is assumed to be
Hurwitz stable, is considered. Then, assuming a perturbation matrix
E in the A matrix, the question as to how much of norm of the
perturbation matrix E can be tolerated to maintain stability is asked.
Note that in this norm-bounded perturbation discussion, the elements
of the perturbation matrix can vary in various directions without any

restrictions on the signs of the elements of that matrix. Even though
there are many stability-robustness measures discussed in [23], in
what follows, focus is placed on a specific robustness measure that
makes use of the condition-number concept. Then, the advantage of
sign-stable matrices over regular Hurwitz-stable matrices with
respect to this particular robustness measure is explored.

5. Comparison of Robustness Index of Different Matrices

Consider a given Hurwitz-stable matrix A0 with perturbation E
such that

A� A0 � E (7)

where A is any one of the perturbed matrices.
A sufficient bound � for the stability of the perturbed system is

given on the spectral norm of the perturbation matrix as

�max�E�<
jRe���A0��jmin

�
� � (8)

where � is the condition number of the modal matrix of A0.
A theorem which clearly establishes the superiority of ecological

sign-stable matrices over other nonecological sign-stable matrices
with respect to the above stability-robustness measure is now stated.

Theorem 3: consider a sign-stable matrix A and a non-sign-stable
Hurwitz-stable matrix B where aii � bii � c < 0 8 i. The
interactions in A are such that the elements in a p–p link have
equal magnitude and the elements ofB have identical corresponding
magnitudes as that of A in the nonzero entries such that B is normal
(BTB� BBT). This means that the interactions in B are not
necessarily predator–prey in nature. Let these normal matrices be
denoted as AN and BN . In addition, AN and BN are normalized and

denoted byANN andBNN whereANN � AN
�max�AN � andBNN �

BN
�max�BN � so

that �max�ANN� � �max�BNN� � 1. For above matrices ANN andBNN ,

jRe���ANN��jmin > jRe���BNN��jmin (9a)

i.e.,

��ANN�>��BNN� (9b)

In other words, a unit-norm, normal ecological sign-stable matrix is
more robust that a unit-norm, normal nonecological sign-stable
Hurwitz-stable matrix.

Proof: consider any square matrix H with all equal negative
diagonal elements. This matrix can be written as

H � �H	diag � �H	int � cI� �H	int

whereHint is the matrix with all off-diagonal elements. Hence all the
diagonal elements of Hint are 0. Hint can now be written as

Hint � �Hint�s � �Hint�sk

where ���s is the symmetric part of the matrix and ���s and ���sk is the
skew-symmetric part of the matrix.

Thus, H � cI� �Hint	s � �Hint	sk �Hs �Hsk where

Hs � cI� �Hint	s and Hsk � �Hint	sk

From above, it is observed that

�i�Hs	 � �i�cI� �Hint�s	 � c� �i��Hint�s	

Let A and B be the matrices as described in the theorem. Then,

�Aint	s � 0

�Bint	s ≠ 0 (because of non-predator–prey interactions).
Note that �Bint	s has zeros on its diagonal; hence, its real

eigenvalues cannot all be negative and cannot all be positive because
they have to add up to zero to satisfy the trace condition.

That means some eigenvalues of �Bint	s are negative and some are
positive. Therefore,
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j��BNNs�jmin < j��ANNs�jmin

Since all the matrices are normal, jRe���ANN��jmin�
j���ANNs��jmin and jRe���BNN��jmin � j���BNNs��jmin.

Therefore it can be seen that jRe���ANN��jmin > jRe���BNN��jmin

Q.E.D.
Example 4: This theorem is now illustrated by the following

example, shown in Table 2, where one normalized sign-stable, pure-
predator–prey-link-structure matrix with identical self-regulatory
intensities and equal interaction strengths is compared with two
different types of normalized, non-sign-stable, non-predator–prey-
interaction, Hurwitz-stable normal matrices.
BN1 is a symmetric matrix (which in turn is a normal matrix). BN2

is a nonsymmetric, Hurwitz-stable, non-sign-stable, non-predator–
prey-link matrix that is normal. The corresponding magnitudes of all
the nonzero entries in all the three matrices are identical. With the
magnitudes of the elements of all the matrices being the same, the
effect of the sign pattern on the stability and robustness of the matrix
is highlighted.

Example 5: Having established the (superior) robustness charac-
teristics of a sign-stable matrix with pure predator–prey links, it is of
interest to compare the robustness characteristics of this sign-stable
matrix with a Hurwitz matrix with all predator–prey links that is
normal but not sign stable anymore. This comparison is illustrated in
Table 3.

From this it can easily be concluded that in matrices with pure-
predator–prey-link structure, imposing the condition of sign stability
pushes the eigenvalues further left and thus improves the robustness
bounds. This can easily be proved mathematically.

Hence pure-predator–prey-link matrices are seen to be superior to
non-predator–prey-link matrices from a stability-robustness point of
view. And within this set of predator–prey-link matrices, sign-stable
matrices are even better. From the above analysis it is clear that sign-
stable matrices possess superior robustness qualities. This gives
impetus to design controllers that drive the closed-loop system to an
ecological sign-stable pattern. Toward this objective, an algorithm

for the design of a controller based on concepts from ecological sign
stability is now presented.

IV. Robust Control Design Using
an Ecological-Sign-Stability Approach

Now that the eigenvalue distribution, condition number
(normality), and robust-stability properties of ecological sign-stable
matrices are studied, it is proposed to use these results to design
robust controllers for engineering systems. In this paper, we focus on
designing full-state-feedback controllers, assuming all states are
available for measurement. Specifically, as discussed in [26],
consider the linear state-space model given by

_x� Ax� Bu

where x is the state-variable vector and u is the control variable.
It is proposed to design a full-state-feedback controller so that the

closed-loop-system matrix is given by

An�n � Bn�mGm�n � Acln�n (11)

where the dimensions of the matrices are highlighted anticipating
their use in the algorithm to be discussed later. From the above,

BG� Acl � A� Aa (12)

The desired closed-loopmatrix is thought of as the target closed-loop
matrix. In this design method, it is intended to select this target
closed-loop-system matrix Acl from ecological principles, namely
that there be predation–prey links (off-diagonal elements) and as
many self-regulatory species as possible (as many negative diagonal
elements as possible). Thus, armed with the justification given in the
previous section, the target closed-loop-system matrix Acl is taken to
be a quantitative sign-stable matrix, wherein the magnitudes of the
sign-stable matrix entries can be treated as design variables, trying to
be as close to the desirable properties (discussed in the previous
section) as possible.

Now, consider the following cases, based on the structure of the B
matrix.

Case 1: B is a square, nonsingular matrix. Then the control-gain
matrix G is given by

G� B�1Aa (13)

Case 2: B is a nonsquare matrix. Arranging all the elements of the
above matrices in vector form, the above matrix equation can be
rewritten as

~B n2�mngmn�1 � acl � a� aan2�1 (14)

Symbolically, the terms in this equation can be expressed as follows:

Table 1 Types of interactions between two species in an ecosystem.

Interaction type Digraph representation Matrix representation

Mutualism � �
� �

� �

Competition � �
� �

� �
Commensalism � �

0 �

� �
Ammensalism � �

0 �

� �
Predation (parasitism) � �

� �

� �

Table 2 Comparison of robustness index of BN1, BN2, and AN matrices.

Matrix type ���N ���NN�� ���N
�max����N �� �i����NN 	 �

Symmetric matrix BN1 �2 �1 0

�1 �2 �1
0 �1 �2

2
4

3
5 �0:5858 �0:2928 0

�0:2928 �0:5858 �0:2928
0 �0:2928 �0:5858

2
4

3
5 �1:0

�0:5858
�0:1716

2
4

3
5 0.1716

Non- symmetric, no predator–prey links,
normal matrix

BN2 �2 �1 0

0 �2 �1
�1 0 �2

2
4

3
5 �0:6667 �0:3333 0

0 �0:6667 �0:3333
�0:3333 0 �0:6667

2
4

3
5 �1:0

�0:5� j0:2887
�0:5 � j0:2887

2
4

3
5 0.5

Pure-predator–prey-link sign-stable matrix
with equal interaction intensities and
identical self-regulation rates.

AN �2 �1 0

1 �2 �1
0 1 �2

2
4

3
5 �0:8165 �0:4082 0

0:4082 �0:8165 �0:4082
0 0:4082 �0:8165

2
4

3
5 �0:8165

�0:8165� j0:5774
�0:8165 � j0:5774

2
4

3
5 0.8165
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~B�

~B1
~B2

..

.

~Bn

2
6664

3
7775
n2�mn

where ~B1 �
B1 0 0

0 . .
.

0

0 0 B1

2
64

3
75
n�mn

~B2 �
B2 0 0

0 . .
.

0

0 0 B2

2
64

3
75
n�mn

� � � ~Bn �
Bn 0 0

0 . .
.

0

0 0 Bn

2
64

3
75
n�mn
(15a)

and Bi (i� 1; . . . ; n) is the ith row of B:

g�

~G1
~G2

..

.

~Gn

2
6664

3
7775 where ~Gi is the ith column of G (15b)

a�

~AT1
~AT2
..
.

~ATn

2
6664

3
7775 where ~Ai is the ith row of A (15c)

Similarly,

acl �

Acl1

Acl2

..

.

Acln

2
6664

3
7775 (15d)

and

aa �

Aa1
Aa2
..
.

Aan

2
6664

3
7775 (15e)

g is a vector formed by concatenating successive columns of matrix

G. a is a vector formed by concatenating successive rows of matrixA
in the form of a column vector. Similarly, vectors acl and aa are
formed frommatrices Acl and Aa, respectively. The above notation is
illustrated in the following example.

Example 6: let BG� Aa��Acl � A� where

B� b11 b12
b21 b22

� �
; G� g11 g12

g21 g22

� �
; Aa�

aa11 aa12
aa21 aa22

� �

Using Eqs. (15) the following linear system is formed:

b11 b12 0 0

0 0 b11 b12
b21 b22 0 0

0 0 b21 b22

2
664

3
775

g11
g21
g12
g22

2
664

3
775�

aa11
aa12
aa21
aa22

2
664

3
775

The control-gain vector g
mn�1 is obtained by applying the conditions

for existence of a solution for a system of linear equations as
discussed in [27]:

1. If rank� ~B� ≠ rank� ~Bjaa�, no solution exists for the matrix G
(overdetermined system).

2a. If rank� ~B� � rank� ~Bjaa� �mn (number of elements of matrix
G), then a unique solution exists for a particular set of aa elements.

2b. If rank� ~B� � rank� ~Bjaa�<mn (number of elements of matrix
G), then infinite solutions exist for a particular set of magnitudes for
aa elements (underdetermined system).

From the above algorithm, it can be seen that the control-gain
determination heavily depends on the numerical values taken for the

sign-stable closed-loop-systemmatrix as well as the structures of the
open-loop matrices A and B.

The proposed algorithm is illustrated with two applications in the
Aerospace field: satellite attitude control problem and aircraft lateral
dynamics control problem.

A. Satellite Formation Flying Control Problem

Example 7: in [28], a control design for the satellite formation
flying problem was discussed. For this system, in [19,20], a
controller was designed using the concept of sign stability but with
no formal procedure or justification for the resulting closed-loop-
systemmatrix. The above control algorithm is now illustrated for the
same example. Following is the satellite attitude dynamics and
control problem discussed in [19,20]:

_x
�x
_y
�y

2
664

3
775�

0 0 1 0

0 0 0 1

0 0 0 2!
0 3!2 �2! 0

2
664

3
775

x
_x
y
_y

2
664

3
775�

0 0

0 0

1 0

0 1

2
664

3
775 Tx

Ty

� �
(16)

where x, _x, y, and _y are the state variables, and Tx and Ty are the
control variables.

For example, when !� 1, the system becomes

A�

0 0 1 0

0 0 0 1

0 0 0 2

0 3 �2 0

2
664

3
775 and B�

0 0

0 0

1 0

0 1

2
664

3
775

A controller is to be designed such that the closed-loop system is
ecological sign stable with magnitudes decided by the analysis and
the algorithm described in the previous sections.

Accordingly, an ecological sign-stable closed-loop system is
chosen such that 1) the closed loopmatrix has asmanypure predator–
prey links as possible; and 2) it also has as many negative diagonal
elements as possible. Taking the above points into consideration, the
following sign pattern is chosen, which is appropriate for the givenA
and B matrices:

Aclss
�

0 0 � 0

0 0 0 �
� 0 � �
0 � � �

2
664

3
775

Themagnitudes of the entries of the above signmatrix are decided
by the stability robustness analysis theorem discussed above:

1) All nonzero aii are identical.
2) aij ��aji for all nonzero aij, else aij � aji � 0.
The magnitudes of the entries, therefore, are

Acl �

0 0 1 0

0 0 0 1

�1 0 �1 2

0 �1 �2 �1

2
664

3
775

Hence, all the pure predator–prey links are of equal interaction
strengths, and the nonzero diagonal elements have identical self-
regulatory intensities. Using the algorithm given above, the gain
matrix is computed as shown below.

Since the first rows are not affected by the B matrix, the ~B matrix
can be reduced to a mn �mn matrix. So now there are eight
equations for the eight unknowns (elements of the gainmatrix). In the
~Bg�acl � a��aa� form, the system is
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1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

g11

g21

g12

g22

g13

g23

g14

g24

2
66666666666666664

3
77777777777777775

�

�1
0

0

�1
�1
�2
2

�1

2
66666666666666664

3
77777777777777775

�

0

0

0

3

0

�2
2

0

2
66666666666666664

3
77777777777777775

�

�1
0

0

�4
�1
0

0

�1

2
66666666666666664

3
77777777777777775

From the algorithm,

Ges �
�1:0 0 �1:0 0

0 �4:0 0 �1:0

� �

The closed-loop matrix Acl��A� BGes� is sign-stable and hence
can tolerate any amount of variation in the magnitudes of the
elements with the sign pattern kept constant.

In this application, it is clear that all nonzero elements in the
open-loop matrix (excluding elements A13 and A24 since they are
connected to states resulting from the transformation of the system
into a set of first-order differential equations) are functions of the
angular velocity!. Hence, real-life perturbations in this system occur
only due to variation in angular velocity !. Therefore, a perturbed
satellite system is simply anAmatrix generated by a different!. This
means that not every randomly chosenmatrix represents a physically
perturbed system and that, for practical purposes, stability of the
matrices generated asmentioned above (by varying!) is sufficient to
establish the robustness of the closed-loop system. It is only because
of the ecological perspective that these structural features of the
system are brought to light. Also, it is the application of these
ecological principles that makes the control design for satellite
formation flying this simple and insightful.

To demonstrate the magnitude independence of stability of the
closed-loop system, keeping the given B matrix and the above
designedGes (designed for!� 1) constant, time histories of the four
states in each of the perturbed cases are plotted in Fig. 6.

3 x 3 sign stable patterns 

1 P-P 
link 
(I-2) 

2 P-P 
links 
(I-3) 

1 P-P 
link 

(II-1) 

2 P-P 
links 
(II-2) 

(II) 

0 P-P 
links 
(I-1) 

(I) 

2 P-P 
links 
(III-1) 

(III) 

One diagonal 
elements is zero 

All diagonal elements 
are negative 

Two diagonal elements 
are zero 

Fig. 5 Categorization of pure-predator–prey-link models.

Fig. 6 Time histories of the states’ a) in-plane displacement, b) in-plane

velocity, c) out-of-plane displacement, and d) out-of-plane velocity for

varying.
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As can be seen in the above plots, the control gain can be deemed
to be a robust control gain as it produces stable closed-loop systems
in the presence of perturbations.

B. Aircraft-Flight-Control Problem

Example 8: consider the problem of aircraft lateral dynamics from
[26]. An approximate linear model of the lateral dynamics of an
aircraft for a particular set of flight conditions is given by

_p

_r

_�

_�

2
66664

3
77775�

�10 0 �10 0

0 �0:7 9 0

0 �1 �0:7 0

1 0 0 0

2
66664

3
77775

p

r

�

�

2
66664

3
77775

�

20 28

0 �3:13
0 0

0 0

2
66664

3
77775

�a

�r

" #
(17)

where x�t� 2 R4 is the state vector consisting of the four state
variables p (roll rate), r (yaw rate), � (sideslip angle), and � (roll
angle), and u�t� 2 R2 is the control vector consisting of the two
control surface deflections �a (aileron angle) and �r (rudder angle).

As established in Section III, it is desired to have a pure predator–
prey interaction closed loopmatrix. The following is a desired closed
loop sign pattern that can be achieved, given the structure of B.

� � 0 �
� � � 0

0 � � 0

� 0 0 0

2
664

3
775

Considering the logic provided in Sec. III, themagnitudes are chosen
such that the pure predator–prey interactions have equal magnitudes
and the self-regulatory intensities are identical. Therefore, the cor-
responding quantitative closed-loop-system matrix is given by

Acl �

�0:7 �1 0 �1
1 �0:7 1 0

0 �1 �0:7 0

1 0 0 0

2
664

3
775

Fig. 7 Time histories of the states’ a) roll rate, b) yaw rate, c) sideslip angle, and d) roll angle under perturbations.

Table 3 Comparison of robustness index of AN and ANpp.

Matrix type ���N ���NN�� ���N
�max����N �

� �i����NN 	 �

Pure-predator–prey-link sign-stable matrix
with equal interaction intensities and
identical self-regulation rates.

AN �2 �1 0

1 �2 �1
0 1 �2

2
4

3
5 �0:8165 �0:4082 0

0:4082 �0:8165 �0:4082
0 0:4082 �0:8165

2
4

3
5 �0:8165

�0:8165� j0:5774
�0:8165 � j0:5774

2
4

3
5 0.8165

All predator–prey links ANpp �2 �1 1

1 �2 1

�1 �1 �2

2
4

3
5 �0:7559 �0:3780 0:3780

0:3780 �0:7559 0:3780
�0:3780 �0:3780 �0:7559

2
4

3
5 �0:7559

�0:7559� j0:6547
�0:7559 � j0:6547

2
4

3
5 0.7559
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Applying the algorithm with the above Acl, the control gain is
obtained as

Ges �
0:5097 �0:05 0:1421 �0:05
�0:3194 0 2:5559 0

� �

This closed-loop matrix, Acl��A� BGes�, therefore, tolerates
perturbation of any magnitude as long as the sign pattern remains
unchanged. The eigenvalues of the closed loop system are

� 0:6152� j1:5827 � 0:4348� j0:5725
� 0:6152 � j1:5827 � 0:4348� j0:5725

which corresponds to a damping ratio of &� 0:6048 and to a natural
frequency of !n � 0:7189.

In what follows, the usefulness of the above controller as a robust
controller is demonstrated by assuming various sign-preserving
perturbations in the closed-loop-systemmatrix and the resulting time
histories of states guaranteeing stability under these perturbations.
For brevity, simulations are shown in Fig. 7 for two specific
realizations of perturbations. These perturbations may be interpreted
as variations in various stability derivatives that appear as entries in
the state space matrices.

Consider

Nominal Acl �

�0:7 �1 0 �1
1 �0:7 1 0

0 �1 �0:7 0

1 0 0 0

2
664

3
775

Perturbation 1 �Acl1 �

0:2 0:5 0 0:25
�0:1 0:22 �0:7 0

0 0:3 0:3 0

�0:4 0 0 0

2
664

3
775

Perturbation 2 �Acl2 �

�0:2 �0:48 0 �0:8
0:9 �0:3 0:82 0

0 �3:9 �1 0

0:73 0 0 0

2
664

3
775

In both of the above examples the emphasis was on describing the
control-design procedure based on ecological sign stability. It can be
seen that there is considerable flexibility in deciding the magnitudes
of the resulting sign-stable closed-loop-system matrix. In fact, in
addition to magnitudes, even the sign-stable sign patterns may
also be taken as design variables to achieve various control-design
objectives. The ideas proposed in this paper offer concrete guidelines
to determine the desired target closed-loop systems in methods for
linear systems control design.

V. Conclusions

The main purpose of this paper is to highlight the ecological
principles inherent in ecological-sign-stability phenomenon and
bring out their implications in the matrix-theory properties encoun-
tered in engineering systems analysis and design. The intent is to be
able to understand the inherent features of ecological systems and
exploit these features in building a robust engineering system.
Toward this objective, the results presented in this paper provide
significant insights into the interrelationship between ecological
principles and the corresponding matrix-theory implications. The
first insight of interest (to both ecologists and engineers) is that, for
any sign-stable matrix, it is shown that the bounds on the real parts of
the eigenvalues are simply the diagonal elements of the matrix itself.
To be able to establish the region of location of eigenvalues without
resorting to any elaborate calculations or computations is a property
that is exclusive to ecological sign-stable matrices. Similarly it is of
significance to realize that if the strengths of interactions and self-
regulation levels are all equal, the ecological sign-stable matrix with
pure predator–prey interactions becomes a normal matrix, and hence
the condition number of its modal matrix is always one. Using this

result, it is proved that such matrices are always more robust from a
real-parameter-variations point of view compared with other general
matrices. Thus, an interesting link between sign stability and robust
stability is provided in this paper. Finally, based on these results, a
new control-design method involving sign stability is presented,
and its usefulness is demonstrated with the help of two important
applications in the aerospace field. The results presented in this paper
can assist in the use of ecological system principles to build highly
robust engineering systems.

Appendix A

Proof of Theorem 2: condition for normality of a 2 � 2 matrix

A� a11 a12
a21 a22

� �

is

a11 � a22; a212 � a221�) a21 � a12 or a21 ��a12�

For example, the 2 � 2 predator–prey model

�x y
�y �x

� �

satisfies the above condition. Therefore, with the given condition on
the diagonal elements, a single predator–prey linkwith identical self-
regulation rates and equal interaction strengths is always normal.

Extension to higher order systems: consider the 3 � 3matrix with
pure-predator–prey-link structure

A�
a a12 a13
�a12 a a23
�a13 �a23 a

2
4

3
5

A can be partitioned as

A1 A2

A3 A4

� �

where

A1�
a a12
�a12 a

� �
; A2�

a13
a23

� �
; A3���a13 �a23 	; A4��a	

Here, A1 and A4 are normal matrices, and A3 ��AT2 (due to
predator–prey interaction). For A to be normal, ATA� AAT :

) AT1 AT3
AT2 AT4

� �
:
A1 A2

A3 A4

� �
� A1 A2

A3 A4

� �
AT1 AT3
AT2 AT4

� �

) AT1A1 � AT3A3 AT1A2 � AT3A4

AT2A1 � AT4A3 AT2A2 � AT4A4

� �

� A1A
T
1 � A2A

T
2 A1A

T
3 � A2A

T
4

A3A
T
1 � A4A

T
2 A3A

T
3 � A4A

T
4

� �

SinceA1 andA4 (hereA4 is a scalar quantity) are normal matrices and
A3 ��AT2 , the above equation becomes

AT1A1 � A2A
T
2 AT1A2 � A2A4

AT2A1 � AT4AT2 AT2A2 � AT4A4

" #

�
A1A

T
1 � A2A

T
2 �A1A2 � A2A

T
4

�AT2AT1 � A4A
T
2 AT2A2 � A4A

T
4

" #

In each of the above matrices, the submatrix ���21 � ���T12 (where the
fact that A4 is used). Hence the property of symmetry is satisfied. For
both the matrices to be equal,

AT1A2 � A2A4 ��A1A2 � A2A
T
4 ) �AT1 � A1�A2 � A2�AT4 � A4�
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Byvirtue of the equal-strength predator–prey interactions, (AT1 � A1)
and (AT4 � A4) are diagonal matrices with identical diagonal
elements.

Hence, the equality above becomes

diag �2a; 2a	:A2 � A2�2a	

which is true. Therefore, a 3 � 3 matrix with pure predator–prey
interactions of equal strengths is always normal.

Similarly, a 4 � 4 equal-strength pure-predator–prey-link
interactions matrixM can be written as

M � A B
C D

� �

such that A and D are normal and of order two. Then,

P�MTM�
AT CT

BT DT

" #
A B

C D

" #

�
ATA� CTC ATB� CTD
BTA�DTC BTB�DTD

" #

Q�MMT �
A B

C D

" #
AT CT

BT DT

" #

�
AAT � BBT ACT � BDT

CAT �DBT CCT �DDT

" #

To establish the property of normality P�Q must hold.
Since ATA� AAT , DTD�DDT , and C��BT ,

ATA� BBT ATB � BD
BTA � DTBT BTB�DTD

" #

�
AAT � BBT �AB� BDT

�BTAT �DBT BTB�DDT

" #

Therefore, P�1; 1� �Q�1; 1� and P�2; 2� �Q�2; 2�.
The other condition on the blocks of P and Q matrices for

normality ofM is

P�2;1� � PT�1;2� �Q�2;1� �QT
�1;2�

BTA �DTBT � �ATB� BD�T ) P�2;1� � PT�1;2� � BTAT �DBT

� ��AB� BDT�T

) Q�2;1� �QT
�1;2�

The condition is satisfied if

P�1;2� �Q�1;2� ) ATB� BD��AB� BDT

) ATB� AB� BDT � BD
) �AT � A�B� B�DT �D�

Because of the equal-strength predator–prey interactions,

�AT � A� � �DT �D� � aii:I2�2

Since identity matrices commute with every matrix, the equality
�AT � A�B� B�DT �D� holds.

Hence P�Q, and, therefore, the matrixM is always normal.
By induction, this proof can be extended to any n � n pure-

predator–prey-link matrix that satisfies the conditions of identical
self-regulation rates and equal interaction strengths. It is also
observed that this property is imparted by the predator–prey
interactions only. That is, the matrix need not be sign stable in order
to be normal.

By the above analysis, an interesting property of predator–prey
links is brought to light.
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